MAT2104-01 (2022학년도 1학기)

2022-01-12 15:27:06  2022-02-28 16:23:21 
집합론 
과B103/실시간온라인(실시간온라인)  화2,3/목2(목3) 
 
김병한  이과대학 수학 
SciH246  02-2123-2585 
bkim@yonsei.ac.kr
 
계산능력 및 모델화 능력 분석능력 독립적 이해력과 창의적 문제해결력
40 30 30
Undergraduate students

학부 2학년 이상
Lecture 3 hours/week (zoom online lectures at least until the end of the  midterm exam period):

Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is an English course.
........................................................................................
강의 주 3시간 (일단 중간고사 기간까지 zoom 강의):

집합연산의 기본 개념을 공부하고 무한집합의 크기를 다루는 기수(Cardinal number),
서수(Ordinal number)와 그들의 연산에 대해 배운다. 
이과목은 수학전반의 기초가 되며, 특히 수리논리학과 공리론적 집힙론을 이해하는 
배경이 된다.
Lecture 3 hours/week (zoom online lectures at least until the end of the  midterm exam period):
강의 주 3시간 (일단 중간고사 기간까지 zoom 강의):
(절대)
4 Home works: total 150 points
2 Exams: total 250=100+150 points
attendance+else:50 points
Karel Hrbacek and Thomas Jech, Introduction to Set Theory, 3rd Edt. Marcel Dekker 1999
과학관 246 (Sci. Hall 246)
교내 2585 (Phone: 2123-2585)
bkim@yonsei.ac.kr
http://sites.google.com/yonsei.ac.kr/byunghankimshomepage/english
이봉훈(Lee, Bong Hun) delta7@yonsei.ac.kr

서일권(Seo, Ilgwon)  klax00@yonsei.ac.kr
Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is an English course.
2022-03-02 2022-03-08
History of Set Theory, 
Chapter 1, Sets 
 
(3.2.) Spring semester classes begin
(3.4. - 3.8.) Course add and drop period 
2022-03-09 2022-03-15
Chapter 1, Sets 
 
(3.9.) Presidential election day 
2022-03-16 2022-03-22
Chapter 2, Relations, Functions, 
Orderings 
 
 
2022-03-23 2022-03-29
Chapter 2,
Chapter 3 Natural Numbers 
 
 
2022-03-30 2022-04-05
Chapter 3, 
 
 
2022-04-06 2022-04-12
Chapter 9, Axiom of Choice
(Pinter Chapter 5) 
 
(4.7.) First third of the semester ends 
2022-04-13 2022-04-19
Chapter 9


Chapter 4 Finite, countable, 
uncountable sets 
 
 
2022-04-20 2022-04-26
 
 
(4.20. - 4.26.) Midterm Examinations 
2022-04-27 2022-05-03
Chapter 4 
 
(4.27. - 4.29.) Course withdrawal period
(5.2. - 5.4.) Application Period for S/U evaluation 
10  2022-05-04 2022-05-10
Chapter 5, Cardinal numbers 
 
(5.2. - 5.4.) Application Period for S/U evaluation
(5.5.) Children`s day 
11  2022-05-11 2022-05-17
Chapter 5
Chapter 6 Ordinal numbers 
 
(5.16.) Second third of the semester ends 
12  2022-05-18 2022-05-24
Chapter 6 
 
 
13  2022-05-25 2022-05-31
Chapter 7 Alephs 
 
 
14  2022-06-01 2022-06-07
Chapter 9 
Arithmetic of Cardinal numbers 
 
(6.1.) Local election day
(6.6.) Memorial day 
15  2022-06-08 2022-06-14
 
 
(6.1. - 6.14.) Self-study 
16  2022-06-15 2022-06-21
 
 
(6.15. - 6.21.) Final Examinations