MAT2104-01 (2017Çг⵵ 1Çбâ)

2017-01-24 15:05:06  2017-04-21 21:02:21 
ÁýÇշР
°úB103(°úB103)  È­8,9,¸ñ7(¸ñ10) 
 
±è¼±¿µ  À̰ú´ëÇÐ ¼öÇР
   
sy831@yonsei.ac.kr/ with appointments
 
ÇкΠ2Çгâ ÀÌ»ó
ÁýÇÕ¿¬»êÀÇ ±âº» °³³äÀ» °øºÎÇÏ°í ¹«ÇÑÁýÇÕÀÇ Å©±â¸¦ ´Ù·ç´Â ±â¼ö(Cardinal number),
¼­¼ö(Ordinal number)¿Í ±×µéÀÇ ¿¬»ê¿¡ ´ëÇØ ¹è¿î´Ù. 
À̰ú¸ñÀº ¼öÇÐÀü¹ÝÀÇ ±âÃʰ¡ µÇ¸ç, ƯÈ÷ ¼ö¸®³í¸®Çаú °ø¸®·ÐÀû ÁýÈü·ÐÀ» ÀÌÇØÇÏ´Â 
¹è°æÀÌ µÈ´Ù.

Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is a Korean course.
°­ÀÇ ÁÖ 3½Ã°£, ¿¬½À 1½Ã°£
¼÷Á¦ 4¹ø:150Á¡
½ÃÇè 3¹ø: ÃÑ 250=75+75+100Á¡
Quiz+Ãâ¼®:50Á¡
Karel Hrbacek and Thomas Jech, Introduction to Set Theory, 3rd Edt. Marcel Dekker 1999
.
±èÁØÈñ   iwmya@naver.com
Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is a Korean course.
2017-03-02 2017-03-08
History of Set Theory, 
Chapter 1, Sets 
 
(3.2.) °³°­
(3.6. - 3.8.) ¼ö°­½Åû È®ÀÎ ¹× º¯°æ 
2017-03-09 2017-03-15
Chapter 1, Sets 
 
 
2017-03-16 2017-03-22
Chapter 2, Relations, Functions, 
Orderings 
 
 
2017-03-23 2017-03-29
Chapter 2,
Chapter 3 Natural Numbers 
 
 
2017-03-30 2017-04-05
Chapter 3, 
 
(4.3. - 4.5.) ¼ö°­Ã¶È¸ 
2017-04-06 2017-04-12
Chapter 8, Axiom of Choice
(Pinter Chapter 5) 
 
(4.7.) Çбâ 1/3¼± 
2017-04-13 2017-04-19
Chapter 8


Chapter 4 Finite, countable, 
uncountable sets 
1Â÷ ½ÃÇè 
(4.17. - 4.22.) Áß°£½ÃÇè 
2017-04-20 2017-04-26
 
 
(4.17. - 4.22.) Áß°£½ÃÇè 
2017-04-27 2017-05-03
Chapter 4 
 
(5.3.) ¼®°¡Åº½ÅÀÏ 
10  2017-05-04 2017-05-10
Chapter 5 Cardinal numbers 
 
(5.5.) ¾î¸°À̳¯ 
11  2017-05-11 2017-05-17
Chapter 5
Chapter 6 Ordinal numbers 
 
(5.15.) Çбâ 2/3 ¼± 
12  2017-05-18 2017-05-24
Chapter 6 
2Â÷ ½ÃÇè 
 
13  2017-05-25 2017-05-31
Chapter 7 Alephs 
 
 
14  2017-06-01 2017-06-07
Chapter 9 
Arithmetic of Cardinal numbers 
 
(6.6.) ÇöÃæÀÏ 
15  2017-06-08 2017-06-14
Review 
 
(6.8. - 6.21.) ÀÚÀ²ÇнÀ ¹× ±â¸»½ÃÇè 
16  2017-06-15 2017-06-21
 
Çб⸻ ½ÃÇè 
(6.8. - 6.21.) ÀÚÀ²ÇнÀ ¹× ±â¸»½ÃÇè