MAT2104-01 (2018Çг⵵ 1Çбâ)

2017-12-26 14:56:47  2018-03-02 11:53:20 
ÁýÇշР
°úB104(°úB104)  È­2,3,¸ñ2(¸ñ3) 
 
±èº´ÇÑ  À̰ú´ëÇÐ ¼öÇР
°ú246  2585 
bkim@yonsei.ac.kr
 
ÇкΠ2Çгâ ÀÌ»ó
ÁýÇÕ¿¬»êÀÇ ±âº» °³³äÀ» °øºÎÇÏ°í ¹«ÇÑÁýÇÕÀÇ Å©±â¸¦ ´Ù·ç´Â ±â¼ö(Cardinal number),
¼­¼ö(Ordinal number)¿Í ±×µéÀÇ ¿¬»ê¿¡ ´ëÇØ ¹è¿î´Ù. 
À̰ú¸ñÀº ¼öÇÐÀü¹ÝÀÇ ±âÃʰ¡ µÇ¸ç, ƯÈ÷ ¼ö¸®³í¸®Çаú °ø¸®·ÐÀû ÁýÈü·ÐÀ» ÀÌÇØÇÏ´Â 
¹è°æÀÌ µÈ´Ù.

Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is a Korean course.
°­ÀÇ ÁÖ 3½Ã°£, ¿¬½À 1½Ã°£
¼÷Á¦ 4¹ø:150Á¡
½ÃÇè 3¹ø: ÃÑ 250=75+75+100Á¡
Quiz+Ãâ¼®:50Á¡
Karel Hrbacek and Thomas Jech, Introduction to Set Theory, 3rd Edt. Marcel Dekker 1999
°úÇаü 246
±³³» 2585
bkim@yonsei.ac.kr
http://web.yonsei.ac.kr/bkim/
¾ÈÁøÈÄ
Welcome to the wonderland of set theory. Set theory is a beautiful and magical 
subject stemmed from transparent and easy observations  leading us to a 
surprising and somewhat unbelievable  logical world on which contemporary 
mathematics is based. Its controversial and contrasting history attracts our 
attentions as well.  In this beginning course, I will focus on elementary part 
of set theory such as set operations, orderings, cardinal and ordinal 
arithmetics which, as primitive notions, are absolutely necessary  in learning 
almost every subject of mathematics. At the same time I will introduce more 
mysterious and advanced part of the subject, though whose  full clarifications 
can possibly be covered in senior or graduate level courses.     
No prerequisite is required. This is a Korean course.
2018-03-02 2018-03-08
History of Set Theory, 
Chapter 1, Sets 
 
(3.2.) °³°­
(3.7. - 3.9.) ¼ö°­½Åû È®ÀÎ ¹× º¯°æ 
2018-03-09 2018-03-15
Chapter 1, Sets 
 
(3.7. - 3.9.) ¼ö°­½Åû È®ÀÎ ¹× º¯°æ 
2018-03-16 2018-03-22
Chapter 2, Relations, Functions, 
Orderings 
 
 
2018-03-23 2018-03-29
Chapter 2,
Chapter 3 Natural Numbers 
 
 
2018-03-30 2018-04-05
Chapter 3, 
 
(4.3. - 4.5.) ¼ö°­Ã¶È¸ 
2018-04-06 2018-04-12
Chapter 9, Axiom of Choice
(Pinter Chapter 5) 
 
(4.9.) Çбâ 1/3¼± 
2018-04-13 2018-04-19
Chapter 9


Chapter 4 Finite, countable, 
uncountable sets 
5ÀÏ ¶Ç´Â 12ÀÏ 1Â÷ ½ÃÇè 
(4.18. - 4.24.) Áß°£½ÃÇè 
2018-04-20 2018-04-26
 
 
(4.18. - 4.24.) Áß°£½ÃÇè 
2018-04-27 2018-05-03
Chapter 4 
 
 
10  2018-05-04 2018-05-10
Chapter 5, Cardinal numbers 
 
(5.5.) ¾î¸°À̳¯ 
11  2018-05-11 2018-05-17
Chapter 5
Chapter 6 Ordinal numbers 
 
(5.16.) Çбâ 2/3 ¼± 
12  2018-05-18 2018-05-24
Chapter 6 
10ÀÏ ¶Ç´Â 17ÀÏ 2Â÷ ½ÃÇè 
(5.22.) ¼®°¡Åº½ÅÀÏ 
13  2018-05-25 2018-05-31
Chapter 7 Alephs 
 
 
14  2018-06-01 2018-06-07
Chapter 9 
Arithmetic of Cardinal numbers 
 
(6.6.) ÇöÃæÀÏ 
15  2018-06-08 2018-06-14
 
 
(6.8. - 6.21.) ÀÚÀ²ÇнÀ ¹× ±â¸»½ÃÇè 
16  2018-06-15 2018-06-21
 
14ÀÏ Çб⸻ ½ÃÇè 
(6.8. - 6.21.) ÀÚÀ²ÇнÀ ¹× ±â¸»½ÃÇè